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Standard Branching Brownian motions (BBMs)
I Initially a particle move as a standard Brownian motion.
I At rate 1 it splits into 2 particles.

I These particles behave independently of each other, continue
move and split, subject to the same rule.

Figure 1: Trajectories of particles in a branching Brownian motion.
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Denote the process by (Xi(t))
n(t)
i=1 . Let Mt := maxi≤n(t) Xi(t) be

the maximal displacement among all the particles alive at time t.

I Biggins’76: lim
t→∞

Mt
t =

√
2 a.s.

I Bramson’83: (Mt −mt : t > 0)
converges in distributuion,
where mt :=

√
2t− 3

2
√
2

log t.

I Lalley-Sellke’87: The limiting
distribution is a randomly
shifted Gumbel distribution:
There exist constant C? and
random variable Z∞ such that

lim
t→∞

P(Mt −mt ≤ x)

= E[exp{−C?Z∞e
−
√
2x}].

Figure 2: Trajectories of Mt
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I Äıdékon-Berestycki-Brunet-Shi’13,
Arguin-Bovier-Kistler’13: The extremal process∑

i≤n(t) δXi(t)−m(t) converges in distribution to a certein
decorated Poisson point process (DPPP):

∑

i≤n(t)

δXi(t)−m(t) ⇒ DPPP(
√

2C?Z∞e
−
√
2xdx,D

√
2).

The extremal process of BBM 539

Fig. 1 Onset of the extremal process

carried over to models with infinite levels of branching such as BBM or the continuous
random energy models studied in [15]. BBM is a case right at the borderline where
correlations just start to effect the extremes and the structure of the extremal process.
Results on the extremes of BBM allow one to peek into the world beyond the simple
Poisson structures and hopefully open the gate towards the rigorous understanding of
complex extremal structures.

Mathematically, BBM offers a spectacular interplay between probability and non-
linear p.d.e’s, as was noted already by McKean [37]. On one hand, the proof of Theorem
2.1 will rely on this dual aspect, in particular on precise estimates of the solutions of the
F-KPP equations based on those of Bramson [16,17] and of Chauvin and Rouault [21],
see Sect. 3.1. This aspect of the paper is in the spirit of Derrida and Spohn [26] who
studied the free energy of the model by relying on results on the F-KPP equation. On the
other hand, we propose a new method to study the extremal statistics of BBM based on
the introduction of an auxiliary point process, whose correlation structure is much sim-
pler than the one of BBM. As explained in Sect. 3.2, this approach finds its origins in the
cavity method in spin glasses [41] and in the study of competing particle systems [3,39].

We believe this heuristic is a potentially powerful tool to understand other problems
in extreme value statistics of correlated variables.

Finally, we remark that a structure similar to the one depicted in Theorem 2.1 is
expected to emerge in all the models which are conjectured to fall into the universality
class of branching Brownian motion, such as the 2-dim Gaussian Free Field (2DGFF)
[11,12,18], or the cover time for the simple random walk on the two dimensional
discrete torus [23,24]. These are models whose correlations decay logarithmically
with the distance. In particular, for log-correlated Gaussian field like the 2DGFF, we
conjecture that the extremal process properly re-centered exists and is exactly of the
form (2.4). Namely, the statistics of well-separated high points should be Poissonian
with intensity measure with exponential density. In particular, the law of the maximum
should be a mixture of a Gumbel as in (1.8) (after this paper has been submitted, partial
progress towards this conjecture has been achieved in [27], and [28]). Finally, the law

123

Figure 3: Construction of the limiting extremal process



Universality
BBM is perhaps the simplest model in the universality class called
log-correlated Fields.

I BRW (Addario-Berry & Reed’09, Hu-Shi’09, Äıdékon’13,
Bramson-Ding-Zeitouni’16, Madaule’17)

I 2DGFF (Bramson-Zeitouni’12,
Bramson-Ding-Zeitouni’16, Biskup-Louidor’16,
Biskup-Louidor’18) For mN =

√
2/π(2 logN − 3

4 log logN),

lim
N→∞

P

(
max
v∈VN

XN
v ≤ mN + x

)
= E

[
e−CZe

− 2√
g
x
]
.

I Cover times of 2D torus by Brownian motion
(Dembo-Peres-Rosen-Zeitouni’04, Belius-Kistler’17)

I High-values of the Riemann zeta-function
(Arguin-Belius-Harper’17,
Arguin-Belius-Bourgade-Radziwi l l-Soundararajan’19,
Arguin-Dubach-Hartung’21+)

I · · · · · ·



Universality
BBM is perhaps the simplest model in the universality class called
log-correlated Fields.

I BRW (Addario-Berry & Reed’09, Hu-Shi’09, Äıdékon’13,
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Variants of BBM are also received many attention.

I Variable speed BBM.(Fang-Zeitouni’12,
Bovier-Hartung’14, Bovier-Hartung’15, Mallein’15,
Maillard-Zeitouni’16, Bovier-Hartung’20)

I d-dimensional BBM (Mallein’15,
Stasiński-Berestycki-Mallein’22,
Kim-Lubetzky-Zeitouni’23,
Berestycki- Kim-Lubetzky-Mallein-Zeitouni’21+.)

I Multi-type (irreducible) BBM. (Biggins’76, R.-Yang’14,
Hou-R.-Song’23+)

I · · · · · ·
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Multi-type branching Brownian motion

In a two-type reducible branching
Brownian motion:

I Type 1 particles move as
Brownian motion with diffusion
coefficient σ2. They split at rate
β into two children of type 1;
and give brith to type 2 particles
at rate α.

I Type 2 particles move as
standard Brownian motion and
branch at rate 1 into two type 2
children, but can not produce
children of type 1.
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Questions

Denote the process by (Xi(t))
n(t)
i=1 . Let Mt := maxi≤n(t)Xi(t) be

its maximum at time t.

Questions:

I What is the order of Mt ?

One should find m(t) = C1t+ C2 log t for some constant
C1, C2 such that Mt −m(t) converges in distribution.

I Asymtotic behavior of the extremal process
∑n(t)

i=1 δXi(t)−m(t)
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Multi-type branching Brownian motion

Biggins’12: Speed of the multi-type branching process in a more
general setting.

I When (β, σ2) ∈ CI , type 1
particles are dominating:
Mt
t →

√
2βσ2.

I When (β, σ2) ∈ CII , type 2
particles are dominating:
Mt
t →

√
2.

I When (β, σ2) ∈ CIII ,
anomalous spreading occurs:
Mt
t → v∗ = β−σ2√

2(1−σ2)(β−1)
.

The speed of the two-type
process is strictly larger than
the speed of both single
type particle systems.

Anomalous spreading in reducible multitype branching Brownian motion

we have limt!1 Et = E1 in law, for the topology of the vague convergence. We give
more details on these results in Section 3.

We refer to the above limit as a DPPP(
p

2c?Z1e�
p

2xdx, D), for decorated Poisson
point process. Maillard [36] obtained a characterization of this type of point processes
as satisfying a stability by superposition property. This characterization was used in
[35] to prove a similar convergence in distribution to a DPPP for the shifted extremal
process of the branching random walk. Subag and Zeitouni [50] studied in more details
the family of shifted randomly decorated Poisson random measures with exponential
intensity.

In this article, we take interest in the two-type reducible branching Brownian motion.
This is a particle system on the real line in which particles possess a type in addition with
their position. Particles of type 1 move according to Brownian motions with diffusion
coefficient �2

1 and branch at rate �1 into two children of type 1. Additionally, they give
birth to particles of type 2 at rate ↵. Particles of type 2 move according to Brownian
motions with diffusion coefficient �2

2 and branch at rate �2, but cannot give birth to
descendants of type 1.

In [10], Biggins observed that in some cases multitype reducible branching random
walks exhibit an anomalous spreading property. Precisely, the rightmost particle at time
t is shown to be around position vt, with the speed v of the two-type process being larger
than the speed of a branching random walk consisting only of particles of type 1 or
uniquely of particles of type 2. Therefore, in that case, the multitype system invades its
environment at a higher speed than the one that either particles of type 1 or particles of
type 2 would be able to sustain on their own.

Holzer [26, 27] extended the results of Biggins to this setting, by considering the
associated system of F-KPP equations, describing the speed of the rightmost particle
in the system in terms of �1,�1,�2 and �2 (the parameter ↵ does not modify the speed
of the two-type particle system). Our aim is to study in more details the position of the
maximal displacement, in particular in the case when anomalous spreading occurs, for
this two type BBM. We also take interest in the extremal process formed by the particles
of type 2 at time t, and show it to converge towards a DPPP.

Recall that the reducible two-type BBM is defined by five parameters, the diffusion
coefficient �2

1, �2
2 of particles of type 1 and 2, their branching rate �1, �2, and the rate

↵ at which particles of type 1 create particles of type 2. However, up to a dilation of
time and space, it is possible to modify these parameters in such a way that �2

2 = �2 = 1.
Additionally, the parameter ↵ plays no role in the value of the speed of the multitype
process. We can therefore describe the phase space of this process in terms of the two
parameters �2 := �2

1 and � = �1, and identify for which parameters does anomalous
spreading occurs. This is done in Figure 1.

�

�2

1

1

CII

CI

CIII

Figure 1: Phase diagram of the two-type reducible BBM.

EJP 26 (2021), paper 61.
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↓

But

Remark: Those asymptotic
behaviour do not depend on α.
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Our results
Denote by BI,II = ∂CI ∩ ∂CII\{(1, 1)}. Define similarly BII,III .

Theorem (Ma-R.’23+)

I The case (β, σ2) ∈ BI,II is the
same as (β, σ2) ∈ CII .
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Our results
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Some words about our proof

Our proof is inspired by Belloum-Mallein’21. We use
many-to-one lemmas and KPP equation estimates.
Two key insights in our proof:

I localization of the extremal paths.
For example, when (β, σ2) ∈ BI,III , we showed that if u is an
extremal particle at time t, then u is of type 2 and let Tu=the
born time of its oldest type 2 ancestor, we should have

Tu = t−Θ(
√
t) and

Xu(Tu) =
√

2βσ2Tu − (θ −
√

2βσ2)(t− Tu) + Θ(
√
t− Tu),

here
c1
√
t ≤ Θ(

√
t) ≤ c2

√
t
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Some words about our proof

I CLT about the Gibbs measure (Madaule’16): For every
bounded continuous function F ,

∑

i≤n(t)

F

(√
2t−Xi(t)√

t

)
e
√
2Xi(t)−2t

∑
i≤n(t) e

√
2Xi(t)−2t

→ 〈F, µ〉

in probability, where µ = ze−z
2/2I(z>0). In particular, taking

F = 1[a+λ,b+λ], we have

∑

i≤n(t)

1{
√
2t−Xi(t)∈[λ

√
t+a
√
t,λ
√
t+b
√
t]}

e
√
2Xi(t)−2t

∑
i≤n(t) e

√
2Xi(t)−2t

→ 〈F, µ〉. (CLT)

Gibbs measure:

1
∑

i≤n(t) e
−
√
2(
√
2t−Xi(t))

∑

i≤n(t)

e−
√
2(
√
2t−Xi(t))δ√2t−Xi(t)
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Some words about our proof
I Local CLT about the Gibbs measure (Ma-R.’23+):

Let G be a non-negative bounded measurable function with
compact support. Suppose Ft(z) = G( z−rtht

).
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in probability. In particular, we have
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